in 5 mL of CH₂Cl₂ was added N-iodosuccinimide (10.6 mg, 0.47 mmol) in one portion at -78 °C, and the mixture was stirred at 0 °C for 2 h in the dark. The reaction mixture was diluted with 20 mL of CH_2Cl_2 , washed with 10 mL of saturated $Na_2S_2O_3$ and saturated NaHCO₃, dried over Na₂SO₄, and concentrated. Analysis of the crude product by ¹H NMR indicated that 11 and three other isomers were present in a 10:1:1:1 ratio. Purification by flash chromatography (hexane) gave 97 mg (61% yield) of 11 as a colorless oil: IR 2980, 1640, 1460, 1110, 1020, 990, 920 cm⁻¹; ¹H NMR δ 5.89 (ddd, 1, J = 8.3, 10.2, 17.3), 5.01 (dd, 1, J = 1.8, 10.2), 4.95 (dd, 1, J = 1.8, 17.3), 4.06 (dd, 1, J = 2.1, 11.5), 3.21 (dd, 1, J = 2.4, 10.1), 2.34 (m, 1), 2.10 (ddd, 1, J = 7.4, 11.5, 19.2),1.90-2.02 (m, 3), 1.62-1.76 (m, 3), 1.48-1.60 (m, 1), 1.42-1.48 (m, 1), 1.31 (s, 3), 1.12–1.22 (m, 1), 1.01 (t, 3, J = 7.2), 0.93 (d, 3, J= 6.9), 0.85 (d, 3, J = 6.7), 0.79 (d, 3, J = 6.6); ¹³C NMR δ 144.0, 113.1, 109.1, 86.3, 78.4, 52.7, 40.0, 38.9, 38.1, 36.4, 33.9, 32.4, 28.8, 20.6, 17.2, 16.4, 14.7, 12.2. Anal. Calcd for C₁₈H₃₁O₂I: C, 53.21; H, 7.69; I, 31.23. Found: C, 52.95; H, 7.57; I, 30.88.

[2a(R*),3b,5b,6b(8S*,9R*)]-8-Ethyl-3,5,9-trimethyl-2-[(1R*)-1-methyl-2-propenyl]-1,7-dioxaspiro[5.5]undecan-9-ol (12). To a solution of iodoketal 11 (77 mg, 0.19 mmol) in 5 mL of acetone and 0.25 mL of water was added AgBF₄ (44 mg, 0.23 mmol). After being stirred for 3 h at room temperature in the dark, the reaction mixture was diluted with 20 mL of ether, and 0.1 g of NaHCO₃ and 1 g of MgSO₄ were added. The mixture was filtered and concentrated. Analysis of the crude product by ¹H NMR indicated that 12 and an isomer were present in a 10:1 ratio. Purification by chromatography (5% ethyl acetate/hexane) gave 42 mg (75% yield) of 12 as a colorless oil: IR 3400, 2990, 1640, 1460, 1380, 1110, 980, 920 cm⁻¹; ¹H NMR δ 6.02 (ddd, 1, J= 7.7, 10.3, 17.6), 5.00 (dd, 1, J = 17.6, 1.1), 4.98 (dd, 1, J = 10.3)1.1), 3.28 (dd, 1, J = 1.7, 10.6), 3.24 (dd, 1, J = 2.5, 10.1), 2.40 (m, 1), 1.79-1.92 (m, 2), 1.66-1.70 (m, 1), 1.50-1.58 (m, 3), 1.39-1.46 (m, 2), 1.22–1.35 (m, 2), 1.10 (s, 3), 1.09 (b s, 1), 0.97 (d, 3, J =6.9), 0.96 (t, 3, J = 7.4), 0.88 (d, 3, J = 6.7), 0.80 (d, 3, J = 6.6); ¹³C NMR δ 143.9, 112.8, 96.6, 76.9, 76.0, 67.9, 38.6, 31.1, 37.3, 35.7, 32.2, 30.6, 21.4, 19.1, 17.2, 16.0, 11.9, 11.3. Anal. Calcd for C₁₈H₃₂O₃: C, 72.93; H, 10.88. Found: C, 72.76; H, 10.77.

Acknowledgment. This work was supported by a grant from the National Institutes of Health (Grant GM-30759). We thank John Bushweller for the NOESY spectrum of compound i.

Cross Coupling of Allylic Derivatives. 15. Regioand Stereospecific Cross-Coupling Reactions of Dienyl Allylic N-Phenylcarbamates with Phenylcopper Reagents

Ted L. Underiner and Harlan L. Goering*

Samuel M. McElvain Laboratories of Organic Chemistry, University of Wisconsin, Madison, Wisconsin 53706

Received January 27, 1989

In connection with another study, we required a method to regiospecifically¹ γ -phenylate an allylic dienyl system. Such a transformation would yield an unconjugated diene as illustrated by eq 1.

$$\bigvee_{\alpha} X \xrightarrow{\text{II}ph^{-11}} Y \xrightarrow{\text{II}ph^{-11}} (1)$$

We have recently reported that the mechanism of cross coupling allylic carboxylates with phenyl(sp²)copper reagents is remarkably different than similar reactions using alkyl(sp³)copper reagents.² Cross coupling allylic carboxylates with alkyl(sp³)copper reagents can be highly regiospecific (γ -alkylation) and evidently proceeds via a σ -allylcopper(III) intermediate (1) as shown by eq 2,³ but cross coupling with phenyl(sp²)copper reagents is nonregiospecific and evidently proceeds via a π -allylcopper(III) complex 2 as shown by eq 3.² The most compelling evi-

$$\begin{array}{c|c} & & & \underline{\mathsf{MeCuZ}} & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & &$$

dence for intermediate 2 is that in unbiased systems (such as α -deuterio-2-cyclohexenyl mesitoate) cross coupling with phenylcopper reagents is entirely nonregiospecific,^{2,3} and in cis allylic systems (such as *cis*-cinnamyl pivalate), cross coupling gives only cis- α -coupling product (i.e., the original β , γ -double-bond configuration is preserved).²

We now report that reaction of allylic dienyl carbamates with phenylcopper reagents according to Gallina's method⁴ or a modification that we reported earlier⁵ occurs with complete regio- and stereospecificity (syn- γ -coupling) and evidently occurs by a cyclic mechanism illustrated by eq 4. This mechanism involves conversion of the carbamate

to a mixed cuprate 3, which undergoes a cyclic intramolecular oxidative addition of the γ -carbon to give a σ -allylcopper(III) complex 4.⁵ Reductive elimination converts the latter to the syn γ -coupling product.⁵ This mechanism parallels that proposed earlier for alkylation of allylic carboxylates with alkyl(sp³)copper reagents (eq 2).^{2,5,6} This is apparently the first instance in which a phenylcopper reagent regiospecifically cross couples with an allylic system; evidently, a σ -allylcopper(III) complex (4) is involved in this transformation.

This result is significant in connection with the mechanistic details of cross-coupling reactions of phenyl(sp²)copper reagents with allylic carboxylates. Heretofore, we were unable to distinguish between (a) direct formation of a π -allylcopper(III) complex (2, eq 3) or (b) initial formation of a σ -allylcopper(III) complex (5, eq 5) with subsequent complete isomerization to π -allyl complex 2.² The present results indicate that a σ -allylcopper(III) complex (4), when formed, undergoes reductive elimination to give the corresponding cross-coupled product. Thus, nonregiospecific cross-coupling reactions of allylic carboxylates with phenyl(sp²)copper reagents (eq 3) evidently involve direct formation of a π -allylcopper(III) complex 2.

⁽²⁾ Underiner, T. L.; Paisley, S. D.; Schmitter, J.; Lesheshki, L.; Goering, H. L. J. Org. Chem., submitted.

- (4) Gallina, C. Tetrahedron Lett. 1982, 23, 3093.
- (5) Goering, H. L.; Kantner, S. S.; Tseng, C. C. J. Org. Chem. 1983, 48, 715.
- (6) Underiner, T. L.; Goering, H. L. J. Org. Chem. 1988, 53, 1140, and earlier papers in this series.

⁽¹⁾ The terms regiospecific and regioselective are used as defined in footnote 3 of Goering, H. L.; Singleton, V. D., Jr. J. Org. Chem. 1983, 48, 1531.

⁽³⁾ Tseng, C. C.; Paisley, S. D.; Goering, H. L. J. Org. Chem. 1986, 51, 2884.

The Gallina procedure⁴ involves adding an organocopper reagent "Li₂Cu₃R₅" (prepared by adding 5 equiv of RLi to 3 equiv CuI) to 1 equiv of carbamate in ether. Although the method is wasteful of lithium reagent, yields (with respect to carbamate) are very good and exclusive syn- γ coupling occurs. Our procedure⁵ is a three-step, one-pot process and involves initial deprotonation of the carbamate with 1 equiv of MeLi followed by complexation of the lithium carbamate with 1 equiv of CuI. The final step is the addition of 1 equiv of lithium reagent (coupling agent). Thus, only 1 equiv of coupling agent is necessary. In order to obtain good yields and to insure high regio- and stereospecificity, complete complexation (step 2) is critical.

3240

The following examples illustrate how either method can be used to generate phenyl-substituted quaternary carbon centers regio- and stereospecifically.⁷ Phenylation of 6-OCONHPh and 7-OCONHPh by either method is regiospecific and gives excellent yields of γ -coupling product (eq 6).

Phenylation of cis- or trans-8-OCONHPh⁸ by either method is regio- and stereospecific (syn- γ -coupling) and yields trans- or cis-9, respectively (eq 7 and 8). The

stereochemistry of *cis*- and *trans*-9 was determined by hydrogenation of each isomer to the corresponding decalin (10) and obtaining ¹³C NMR spectra at room temperature and at -50 °C. The 10 ring carbons of the conformationally flexible cis-10 give six signals at room temperature and ten signals at -50 °C.⁹ trans-10 gives six signals for the 10 ring carbons regardless of the temperature.⁹

Experimental Section

General Methods. All reagents were prepared and purified, and lithium reagents were standardized as reported earlier.² The high-resolution mass spectrometer and the 200-MHz NMR spectrometer used in this work have also been described.² General procedures for alkylation of allylic N-phenylcarbamates have been reported;^{4,5,8} the Gallina method⁴ gave comparable yields to our method⁵ and ranged from 75% to 93%.

3-((E)-2-Phenylethenyl)-2-cyclohexenyl N-phenylcarbamate (6-OCONHPh) was prepared from the corresponding alcohol¹⁰ and phenyl isocyanate in the usual manner^{5,11} and recrystallized from hexane (95% yield). The carbamate had the following properties: mp 148-149 °C dec; NMR (CDCl₃) δ 7.0-7.4 (m, 10 H), 6.80 (d, 1 H, J = 16.1 Hz), 6.60 (d, 1 H, J = 16.1 Hz), 6.56 (m, 1 H), 5.94 (br s, 1 H), 5.42 (br s, 1 H), 2.2–2.5 (m, 2 H),

1.7–2.0 (m, 4); high-resolution mass spectrum calcd for $C_{21}H_{21}NO_2$ m/e 319.1573, found m/e 319.1568.

3-Ethenyl-2-cyclohexenyl N-phenylcarbamate (7-OCONHPh) was prepared as above from the corresponding alcohol¹² (94% yield) and had the following properties: mp 59-60 °C; NMR (CDCl₃) δ 7.2–7.4 (m, 4 H), 7.06 (t, 1 H, J = 6.6 Hz), 6.63 (br s, 1 H), 6.37 (dd, 1 H, J = 17.6, 10.8 Hz), 5.80 (br s, 1 H), 5.40 (br s, 1 H), 5.26 (d, 1 H, J = 17.6 Hz), 5.09 (d, 1 H, J= 10.8 Hz), 2.0-2.4 (m, 2 H), 1.5-2.0 (m, 4 H); high-resolution mass spectrum calcd for $C_{15}H_{17}NO_2 m/e$ 243.1260, found m/e 243.1255.

3-Phenyl-3-((E)-2-phenylethenyl)cyclohexene: NMR $(CDCl_3) \delta 7.1-7.5 \text{ (m, 10 H)}, 6.42 \text{ (s, 2 H)}, 5.98 \text{ (dt, 1 H, } J = 10.1,$ 3.5 Hz), 5.80 (d, 1 H, J = 10.1 Hz), 2.0-2.1 (m, 4 H), 1.4-1.8 (m, hz)2 H); high-resolution mass spectrum calcd for $C_{20}H_{20}$ m/e 260.1566, found m/e 260.1566.

3-Ethenyl-3-phenylcyclohexene: NMR (CDCl₃) & 7.2-7.4 (m, 5 H), 6.02 (dd, 1 H, J = 17.3, 10.6 Hz), 5.94 (dt, 1 H, J = 10.1, 3.6 Hz), 5.72 (br d, 1 H, J = 10.1 Hz), 5.15 (dd, 1 H, J = 10.6 ,1.3 Hz), 5.09 (dd, 1 H, 17.3, 1.3 Hz), 2.0–2.1 (m, 2 H), 1.9–2.0 (m, 2 H), 1.4-1.7 (m, 2 H); high-resolution mass spectrum calcd for $C_{14}H_{16} m/e$ 184.1253, found m/e 184.1255.

cis-3,4,4a,5,6,8a-Hexahydro-8a-phenylnaphthalene (cis-9): NMR (CDCl₃) δ 7.1–7.4 (m, 5 H), 5.90 (dt, 2 H, J = 10.0, 3.7 Hz), 5.53 (dt, 2 H, J = 10.0, 2.0 Hz), 2.1-2.2 (m, 4 H), 1.89 (m, 1 H),1.5–1.7 (m, 4 H); high-resolution mass spectrum calcd for $C_{16}H_{18}$ m/e 210.1409, found m/e 210.1408.

trans -3,4,4a,5,6,8a-Hexahydro-8a-phenylnaphthalene (trans-9): NMR (CDCl₃) δ 7.2–7.4 (m, 5 H), 5.94 (dt, 2 H, J = 9.8, 3.7 Hz), 5.67 (dt, 2 H, J = 9.8, 2.2 Hz), 2.2–2.4 (m, 4 H), 1.8–2.0 (m, 1 H), 1.2-1.4 (m, 4 H); high-resolution mass spectrum calcd for $C_{16}H_{18}$ m/e 210.1409, found m/e 210.1410.

cis-9-Phenyldecalin (cis-10) had the following properties: ¹H NMR (CDCl₃) δ 7.46 (d, 2 H, J = 7.9 Hz), 7.36 (app t, 2 H, J = 7.9 Hz), 7.17 (t, 1 H, J = 7.9 Hz), 2.32 (m, 1 H), 1.2–2.0 (m, 16 H); $^{13}\mathrm{C}$ NMR (–50 °C, CDCl_3) δ 150.2, 128.8, 126.5, 125.5, 44.5, 42.0, 37.3, 28.4, 27.4, 27.1, 26.8, 26.7, 22.9, 20.9; high-resolution mass spectrum calcd for $C_{16}H_{22}$ m/e 214.1722, found m/e 214.1720.

trans-9-Phenyldecalin (trans-10): ¹H NMR (CDCl₃) & 7.52 (d, 2 H, J = 7.4 Hz), 7.26 (app t, 2 H, J = 7.4 Hz), 7.10 (t, 1 H, 1)J = 7.4 Hz), 0.9–2.1 (m, 17 H); ¹³C NMR (CDCl₃) δ 146.0, 129.7, 127.5, 124.7, 47.6, 44.5, 43.6, 29.8, 27.7, 22.3; high-resolution mass spectrum calcd for $C_{16}H_{22}$ m/e 214.1722, found m/e 214.1722.

Acknowledgment. This work was supported by the National Science Foundation (Grant CHE-8406480).

(12) Corey, E. J.; Mayers, A. G. Tetrahedron Lett. 1984, 25, 3559.

Synthesis of 3'-Cyano-2',3'-dideoxyadenosine and 2',3'-Dideoxy-3'-formyladenosine

Dong Yu and Marc d'Alarcao*

Michael Chemistry Laboratory, Department of Chemistry, Tufts University, Medford, Massachusetts 02155

Received January 24, 1989

Despite the growing recognition that unnatural 2'deoxynucleosides modified in the sugar portion often exhibit powerful antiviral properties,¹ synthetic methods to replace the natural C-O bond at the 3'-position of the deoxynucleoside with a C-C bond are scarce. The principal synthetic problems have been (1) the instability of 3'-keto-2'-deoxynucleosides, which undergo rapid elimination of the heterocyclic base,² precluding the use of traditional C-C bond forming methods such as the aldol

⁽⁷⁾ The same methods have been used to stereospecifically generate methyl-substituted quaternary carbons (see ref 8), and butyl-substituted

<sup>quaternary carbon centers (unpublished results by T. L. Underiner).
(8) Underiner, T. L.; Goering, H. L. J. Org. Chem. 1987, 52, 897.
(9) Dalling, D. K.; Grant, D. M.; Paul, E. G. J. Am. Chem. Soc. 1973,</sup>

^{95.3718} (10) Kuhn, D. E.; Lillya, C. P. J. Am. Chem. Soc. 1972, 94, 1682.
 (11) McElvain, S. M. The Characterization of Organic Compounds;

MacMillan: New York, 1953; p 199.

⁽¹⁾ For leading references, see: Mansuri, M. M.; Martin, J. C. Ann.

<sup>Rep. Med. Chem. 1987, 22, 147.
(2) Hansske, F.; Robins, M. J. Tetrahedron Lett. 1983, 24, 1589.
Hansske, F.; Madej, D.; Robins, M. J. Tetrahedron 1984, 40, 125.</sup>